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Abstract 

Background  Multibreed genomic prediction (MBGP) is crucial for improving prediction accuracy for breeds 
with small populations, for which limited data are often available. Recent studies have demonstrated that partition-
ing the genome into nonoverlapping blocks to model heterogeneous genetic (co)variance in multitrait models can 
achieve higher joint prediction accuracy. However, the block partitioning method, a key factor influencing model 
performance, has not been extensively explored.

Results  We introduce mbBayesABLD, a novel Bayesian MBGP model that partitions each chromosome into nonover-
lapping blocks on the basis of linkage disequilibrium (LD) patterns. In this model, marker effects within each block are 
assumed to follow normal distributions with block-specific parameters. We employ simulated data as well as empirical 
datasets from pigs and beans to assess genomic prediction accuracy across different models using cross-validation. 
The results demonstrate that mbBayesABLD significantly outperforms conventional MBGP models, such as GBLUP 
and BayesR. For the meat marbling score trait in pigs, compared with GBLUP, which does not account for heterogene-
ous genetic (co)variance, mbBayesABLD improves the prediction accuracy for the small-population breed Landrace 
by 15.6%. Furthermore, our findings indicate that a moderate level of similarity in LD patterns between breeds (with 
an average correlation of 0.6) is sufficient to improve the prediction accuracy of the target breed.

Conclusions  This study presents a novel LD block-based approach for multibreed genomic prediction. Our work 
provides a practical tool for livestock breeding programs and offers new insights into leveraging genetic diversity 
across breeds for improved genomic prediction.
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Background
Genomic prediction is a method that uses genetic mark-
ers across the entire genome to estimate genomic breeding 
values [1]. Genomic prediction has demonstrated marked 
effectiveness in animal and plant breeding [2, 3], particularly 
in international transboundary breeds with large reference 
populations [4]. However, for breeds with small popula-
tions and unique genetic characteristics, the challenge lies in 
establishing a sufficiently large reference population [5–7]. 
Additionally, similar difficulties arise in establishing refer-
ence populations of sufficient size for traits that are difficult 
to measure [8, 9]. The prediction accuracy of genomic breed-
ing values cannot be reliably guaranteed when an adequately 
large reference population is unavailable [10].

To address these issues, an increasing number of stud-
ies have leveraged information from multiple breeds for 
genomic prediction (MBGP) [11–13]. Unlike multi-popu-
lation joint prediction, different breeds usually do not share 
common ancestors, making it impossible to conduct joint 
evaluation through pedigree connections. The reduced 
cost of genotyping and the emergence of genomic pre-
diction techniques have provided new opportunities for 
MBGP. The traditional approach to MBGP involves treat-
ing different breeds as purebred populations and applying 
conventional univariate models [14, 15]. However, owing 
to differences in linkage disequilibrium (LD) patterns and 
allele frequencies among breeds, simply merging data 
from different breeds often results in lower accuracy than 
within-breed genomic prediction [16–18].

The multi-trait model offers a more promising 
approach for MBGP by treating the same traits in differ-
ent breeds as distinct but potentially correlated traits of 
a single breed [19, 20]. This method can flexibly account 
for the genetic correlations between traits in different 
breeds. Significant genetic heterogeneity in cholesterol 
traits across ancestries has been reported, with SNP 
showing concordant effects more frequently found in 
certain genomic regions, such as regulatory regions [21]. 
Additionally, a study on beef cattle revealed differences in 
the degree of genetic correlation between breeds across 
different genomic regions [22]. Compared with within-
breed prediction, the incorporation of heterogeneous 
genetic (co)variance in MBGP has been shown to achieve 
higher accuracy [18], where genome partitioning employs 
a fixed number of adjacent SNPs. However, the genomic 
regions defined by this partitioning method may not 
accurately represent true haplotype segments, potentially 
affecting the model’s predictive performance. In a recent 
study, a multibreed genomic prediction model that incor-
porates local genetic correlations was developed [23]. 
However, this model categorizes the genome into only 
three types of regions: those with positive, negative, or 
neutral correlations. By assuming these fixed correlation 

values across the entire genome, this model potentially 
limits its overall predictive performance.

In this study, we developed an MBGP BayesA model 
accounting for blockwise heterogeneous genetic (co)vari-
ance based on linkage disequilibrium (mbBayesABLD), 
which enhances interbreed information sharing by utilizing 
within-block genetic correlations. Through extensive evalu-
ations using both simulated datasets and real data from ani-
mal and plant populations, we demonstrate that compared 
with conventional joint prediction models, mbBayesABLD 
consistently achieves higher prediction accuracy.

Methods
Datasets
Simulation
We simulated two multibreed pig populations with 
growth rate traits using QMSim (v1.10) software [24]: 
one with two breeds of different population sizes and 
another with three breeds of equal population sizes (Fig. 
S1). Different mating designs and selection criteria were 
used for individuals from a common historical popula-
tion, resulting in different LD patterns and allele frequen-
cies (Table  1). For the last three generations of all the 
breeds, two individuals per litter were randomly selected 
for further analysis. In the two-breed simulation, 3,000 
individuals from breed A and 600 from breed B were 
simulated. In the three-breed simulation, 600 individuals 
were simulated for each breed. A total of 50,058 evenly 
distributed SNPs across the genome were selected for 
further analysis.

Heterogeneous genetic (co)variance was simulated by 
generating phenotypes using custom R scripts. SNPs 
were grouped according to the genome partitioning 
method proposed in this study. We randomly selected 
300 blocks and chose one SNP per block as a QTL, 
assuming uncorrelated effects. Additionally, 10 blocks 
were randomly selected, with 10 SNPs per block cho-
sen as QTLs, assuming that the correlation of these 
QTL effects between breeds is represented by rg. For 
rg, two scenarios were considered: one with a constant 
rg_mean (referred to as ‘identical’) and another sampled 
from a uniform distribution U(−1, 1) and adjusted to 
rg_mean (referred to as ‘uniform’). In the two-breed 
simulation, rg_mean was set to 0.2, 0.5, or 0.8, whereas 
in the three-breed simulation, rg_mean was set to 0.2. 
The two-breed simulation results indicate that, under 
our settings, heritability had little effect on prediction 
accuracy. Phenotypes were simulated by adding fixed 
breed effects and random residual effects to the addi-
tive genetic effects. The entire simulation process was 
repeated 20 times. Details of the simulation are pro-
vided in the Supplemental Methods (Additional file 1).
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Real data
Using two public datasets, we analyzed four traits from 
livestock and plants (Table 2). The pig dataset contains 
two breeds, Yorkshire (YY) and Landrace (LL), with 641 
and 228 observations, respectively [25]. The pigs were 
raised under a consistent feeding environment, provided 
with the same commercial diets and free access to water, 
and were slaughtered under standardized conditions. A 
total of 37,304 markers were retained after quality con-
trol procedures. The phenotypic data included two meat 
quality traits: the marbling score (MS) and the propor-
tion of fat areas in the image (PFAI). The bean dataset 
consisted of three small-population panels: the newly 
composed climbing bean panel (VEC), the Andean 
diversity panel (ADP), and the elite Andean breeding 
panel (VEF) [26]. The numbers of individuals in the 
three panels were 344, 357 and 587. Two agronomic 
traits, 100-seed weight (100SdW) and yield, were used 
in the bean dataset. The heritability of all the traits was 

estimated using a single-trait GBLUP model to pro-
vide insights into their genetic architecture (Table  2). 
Detailed descriptions of each dataset are available in the 
Supplemental Methods (Additional file 1).

Genomic structure analysis
Genetic differences between breeds are a key factor influ-
encing combined predictions. Firstly, we generated PCA 
plots using genotype data by PLINK (v1.90) [27]. Using 
the LD metric r2 calculated in PLINK, we computed the 
correlation coefficients of r2 for all the SNP pairs within 
a 10-Mbp window (R10Mbp) to assess the consistency of 
the LD pattern [28]. Additionally, we calculated the Pear-
son correlation coefficients between the allele frequencies 
of all the populations on the basis of the SNP markers that 
segregated simultaneously in both populations.

mbBayesABLD model
To model heterogeneous genetic (co)variance across different 
genomic blocks, we employed a multitrait BayesA model:

where yl is the phenotype vector of breed l, with cor-
rected phenotypes in the bean dataset and raw pheno-
types in other datasets. Vector bl is the fixed effect(s) of 
breed l with a uniform prior. For the bean and simulation 
dataset, only the population mean was considered a fixed 
effect, while an additional fixed effect for sex was included 
in the pig dataset. The number s is the number of blocks 
across all chromosomes, mi is the number of SNPs in 
block i, aijl is the allelic substitution effect of breed l at 
SNP j within block i, and zijl is a column vector where all 
values represent the minor allele count (0, 1 and 2 for gen-
otypes AA, Aa and aa, respectively) for SNP j. This effect 

yl = Xlbl +
s
i=1

mi

j=1
zijlaijl + el

Table 1  Parameters in the simulation of genotypes and 
phenotypes across different breeds

Gen refers to the number of generations during the second phase of breed 
formation, following the selection of founder populations from historical 
populations for each breed. During the same phase, Sel refers to the individual 
selection criteria, where ’phen/h’ indicates selecting individuals with high 
phenotypic value, ’phen/l’ indicates selecting individuals with low phenotypic 
value, rnd means random selection of individuals, Nind is the number of 
individuals used for genomic prediction, and h2 is the heritability of traits. 
The mean corresponds to the population mean used in the simulation of the 
phenotypes

Scenarios Breed Gen Sel Nind h2 Mean

Two 
breeds

A 40 phen/h 3,000 0.5 1.0

B 10 rnd 600 0.3 0.5

Three 
breeds

A 70 rnd 600 0.5 1.5

B 40 phen/h 600 0.4 1.0

C 10 phen/l 600 0.3 0.5

Table 2  Summary description of the two real datasets

In terms of the analyzed traits, PFAI is the proportion of fat areas in the image, MS is the marbling score and 100SdW is the 100-seed weight of the bean. In the 
analyzed population, YY represents Yorkshire pigs, LL represents Landrace pigs, VEC represents the newly composed climbing bean panel, ADP represents the 
Andean diversity panel, and VEF represents the elite Andean breeding panel. NSNP represents the number of SNPs used in this study, and Nind represents the number 
of individuals with both phenotype and genotype information. The phenotypes are presented as the mean (standard deviation). Heritability was estimated using a 
single-trait GBLUP model and is reported as the mean (standard error)

Dataset NSNP Traits Breed Nind Phenotype Heritability

Pig 37,304 PFAI YY 641 2.02 (1.26) 0.22 (0.07)

LL 228 2.37 (1.42) 0.31 (0.16)

MS YY 641 1.43 (0.48) 0.19 (0.07)

LL 228 1.57 (0.54) 0.33 (0.16)

Bean 14,913 Yield VEC 344 2,049.09 (323.09) 0.56 (0.08)

ADP 357 1,009.93 (172.36) 0.49 (0.05)

VEF 587 1,089.98 (235.58) 0.64 (0.06)

100SdW VEC 344 40.88 (6.20) 0.20 (0.07)

ADP 352 38.91 (6.08) 0.58 (0.05)

VEF 562 39.68 (4.66) 0.19 (0.06)
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follows a multivariate normal distribution with the prior 
marker effect in block i being N (0,Gi) , where Gi is the 
(co)variance matrix of all marker effects within the block, 
with a prior inverse Wishart distribution IW

(
df ,Bi

)
 . In 

a recent study, we demonstrated that specifying the scale 
matrix Bi of the inverse Wishart (IW) prior distribution 
from the phenotype can achieve higher prediction accu-
racy than using noninformative hyperparameters [18]. 
Therefore, Bi = h̃2P/[s(df − 1)

∑mi
j=1

2pj(1− pj)] was 
used in this study, where df = 4 + p , p is the number 
of breeds, and h̃2 is the prior of heritability, which was 
set to 0.5, a moderately informative and neutral value 
commonly used in practice. P is a diagonal matrix with 
phenotypic variance along the diagonal, pj is the allele 
frequency of SNP j in block i across breeds, and e is the 
residual effect vector that follows N (0, In ⊗ R0) , where n 
is the number of individuals, and R0 ∼ IW

(
df ,Rp

)
 , with 

Rp = (1− h̃
2
)P/(df − 1) . Then, the full conditional pos-

terior distributions for b, a, R0 and Gi were as follows:

where Mi is the genotype matrix coded as 0, 1, 2 for the 
minor allele, and y∗ and y+ are vectors of corrected phe-
notypic values. The missing phenotypes were imputed 
according to the method proposed by Gianola and Fer-
nando [29]. For  more detailed information about the 
derivation of the posterior distribution, refer to the Sup-
plemental Methods.

A key feature of our model is the application of a 
novel genome block partitioning method when hetero-
geneous genetic (co)variance is incorporated. First, we 
calculated a statistic wk based on the LD to determine 
whether a given position is suitable as a breakpoint:

where wk ( k = 1, · · · ,m ) is the statistic w of SNP k and m 
is the number of SNPs on the chromosome that need to be 
divided into blocks. Mi ( i = max{1, k − Nwin + 1}, · · · , k) 
is column i of the genotype matrix M, coded as 0, 1 or 
2 for genotypes A1A1, A1A2 and A2A2, respectively. Mj 
is similar to Mi and j = k + 1, · · · ,min{i + Nwin,m} . 
Corr[Mi,Mj] is the Pearson correlation coefficient 

P(b|ELSE) ∝ N [(X′
R
−1

X)−1
X
′
R
−1y∗, (X′

R
−1

X)−1]

P
(
aij|ELSE

)
∝ N

[(
M

∗′

i R
−1

M
∗
i + B

−1
i

)−1

M
∗′

i R
−1y†,

(
M

∗′

i R
−1

M
∗
i + B

−1
i

)−1
]

P(Gi|ELSE) ∝ IW

[
df +mi,

(
mi∑
i=1

aija
′
ij + Bi

)]

P(R0|ELSE) ∝ IW

[
df + n,

(
n∑

i=1

eie
′
i + Rp

)]

R = In⊗R0, y
∗ = y −

∑s
i=1M

∗
j ai

M
∗
i = Ip⊗Mi, y

† = y − Xb−
∑s

t �=i M
∗
t at

wk =
1

mk

∑
Corr[Mi,Mj]

2

between Mi and Mj , where Nwin is a parameter used to 
control the SNP farthest from k that needs to be consid-
ered when the correlation coefficient is calculated. In the 
simulation study, we found that setting Nwin to 50 yielded 
a relatively optimal prediction accuracy (Fig. S2). mk is 
the number of all vector pairs that match the value range 
of i and j. We provide a small example illustrating the 
detailed calculation process for wk in Fig. 1.

Theoretically, the metric wk ranges from 0 to 1, with 
higher values indicating stronger linkages between SNP 
k and its flanking SNPs on both sides. After obtain-
ing the w vector for a chromosome, we applied the 
smooth.spline function provided by R’s stats package to 
achieve curve smoothing [30]. On the basis of LD cal-
culations and visualization using real genotype data, 
we found that setting the smoothing parameter spar to 
0.2 resulted in moderate smoothing of the w vector and 
facilitated the identification of LD block breakpoints 
(Fig. S3). We then searched the entire chromosome 

for local minima, using these as breakpoints for block 
delineation. Thus, regional partitioning utilized com-
bined genotype information from all the breeds in the 
reference population.

Models used for comparative analysis
In previous studies, we compared the accuracy of within-
breed and multibreed genomic prediction models [18]. 
Building on those findings, this study focuses specifically 
on multibreed approaches and investigates the advan-
tages of the mbBayesABLD model over other multibreed 
genomic prediction methods.

Bayesian models
In addition to  mbBayesABLD with our proposed 
block partitioning method, two additional strategies 
were implemented to segment chromosomes in the 
mbBayesAB framework. First, the haplotype defini-
tion method (https://​github.​com/​cadel​eeuw/​lava-​parti​
tioni​ng) was applied to segment the chromosomes [31], 
with a minimum requirement of 100 SNPs per block. 
This method also uses LD information to determine 

https://github.com/cadeleeuw/lava-partitioning
https://github.com/cadeleeuw/lava-partitioning
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breakpoints but emphasizes maintaining consistent 
block lengths. We refer to this model as mbBayesAB-
lava in the subsequent sections. Additionally, a simpler 
strategy based on a fixed number of SNPs (mbBayesAB-
fix) was used for comparison. The number of SNPs in 
this strategy was set to 100, as this configuration dem-
onstrated optimal performance in previous studies [32, 
33]. The comparative analysis also included BayesR 
[34], a model that accounts for variance heterogeneity 
by assuming that  SNP effects follow a mixture of four 
normal distributions. The single-trait BayesR model 
was applied to the MBGP using a reference population 
created by merging multiple breeds, implemented with 
the publicly available BayesR software (https://​github.​
com/​synth​eke/​bayesR) under default settings.

The three models (mbBayesAB-fix, mbBayesAB-lava, 
and mbBayesABLD) accounting for heterogeneous 
genetic (co)variances in this study were implemented and 
estimated using our in-house software package mbBayes-
ABLD, which is freely available for download and use 
from our GitHub repository: https://​github.​com/​CAU-​
TeamL​iuJF/​MBGP_​CV/​tree/​main/​mbBay​esABLD. Anal-
ysis of the posterior samples indicated that increasing the 
number of iterations beyond 30,000 led to highly con-
sistent outcomes across the Bayesian models (Table S1). 
Therefore, in the analysis of the Bayesian models, the 
Gibbs sampler ran for 30,000 cycles, with the first 20,000 

cycles treated as burn-in and a thinning interval of ten 
cycles. The same iteration settings were also used in the 
BayesR analysis.

GBLUP models
Two GBLUP models were applied for MBGP: STGB-
LUP and MTGBLUP. The general model was defined as:

where a is the vector of genomic breeding values, and 
the  other terms are specified as in mbBayesABLD. In 
STGBLUP, all breeds in the reference population were 
treated as a single population with a shared genetic back-
ground, and single-trait GBLUP was applied, assum-
ing a ~ N (0,Gσ 2

a ) , where G is the genomic relationship 
matrix (GRM) and σ 2

a  is the additive genetic variance. In 
MTGBLUP, the same trait measured across breeds was 
modeled as distinct traits, with a ~ N (0,G0 ⊗G) , where 
G0 is the (co)variance matrix of genomic breeding values 
between traits. The GRM was constructed following the 
method of VanRaden [35] implemented in GMAT soft-
ware (https://​github.​com/​chaon​ing/​GMAT), using allele 
frequencies from the joint reference population [36, 37]. 
Variance components and GEBVs were estimated with 
DMUAI program of the DMU software [38].

y=Xb+Za+e

Fig. 1  Procedure for genomic block partitioning based on linkage disequilibrium (LD). The values (0, 1, or 2) in the SNP content matrix represent 
the number of minor alleles in an individual at the given locus, while Cor

(
SNPi , SNPj

)
 represents the Pearson correlation coefficients of the allele 

content for markers i and j. w represents the average correlation coefficient between all SNP pairs on both sides of a given SNP, where the distance 
between the pairs falls within the window (win), assuming that this SNP serves as the genomic partition breakpoint. This value reflects the degree 
of linkage disequilibrium between SNPs on both sides of the specified SNP

https://github.com/syntheke/bayesR
https://github.com/syntheke/bayesR
https://github.com/CAU-TeamLiuJF/MBGP_CV/tree/main/mbBayesABLD
https://github.com/CAU-TeamLiuJF/MBGP_CV/tree/main/mbBayesABLD
https://github.com/chaoning/GMAT
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Cross‑validation and model performance assessment
The same MBGP models were applied to both the sim-
ulated and real datasets to enable comparative perfor-
mance evaluation across different data structures (Fig. 
S4). Five-fold cross-validation (CV) was employed to 
assess the accuracy and unbiasedness of the GEBVs. 
The CV process was repeated five times in the simula-
tion and ten times in the real datasets. The same valida-
tion subsets were applied across all the models with the 
reference population formed by merging the respective 
breeds (Table  S2). Prediction accuracy and unbiased-
ness were assessed by calculating the correlation and 
regression coefficients between the GEBVs and the 
pre-adjusted phenotypes (or true breeding values in 
simulations) for the validation individuals. Refer to the 
Supplemental Methods  (Additional file  1) for details 
on the CV procedure. Paired t-test was performed to 
assess the statistical significance of mean differences. 
The computational efficiency of the different models 
was compared by measuring the runtime and aver-
age peak memory consumption for all MBGP models 
included in the simulation study.

Results
Effects of genome segmenting on multibreed prediction 
accuracy
For MBGP of PFAI, MS, and yield traits, the global 
genetic correlation estimates from the Bayesian model 
were significantly lower than those from the MTGB-
LUP (Tables S3 and S4). Notably, the mbBayesABLD 
model achieved a significant improvement in predic-
tion accuracy compared with the MTGBLUP model 
in the analysis of these traits. The estimates of local 
genetic correlations indicate that genetic correlations 
vary significantly across different genomic blocks (Fig. 
S5). We visualized the breakpoint definitions used in 
the mbBayesABLD and mbBayesAB-lava models (Fig. 
S6). When an extremely low local w value was obtained, 
the correlation between the SNP on either side of the 
position was considered weak, suggesting a potential 
breakpoint between the two haplotype fragments. A 
comparison of the breakpoints identified by mbBayesA-
BLD and mbBayesAB-lava revealed that those defined 
by mbBayesABLD typically appeared at positions where 
local LD trends changed. Some breakpoints identified 
by mbBayesAB-lava were similar to those in mbBayes-
ABLD, whereas others appeared at the rising or falling 
points of the curve. Notably, we found that using the 
merged population as the reference panel yielded the 
highest prediction accuracy when block partitioning 
was conducted.

Simulation datasets
Software runtime and memory usage
Simulated data were used to evaluate the computa-
tional speed (Table  S5). All the models were run using 
a single core. For joint prediction for two breeds, the 
computational speed of the multitrait Bayesian models 
(mbBayesAB-fix, mbBayesAB-lava, and mbBayesABLD) 
was comparable to that of the MTGBLUP model. Nota-
bly, when the reference population included all three 
breeds, the runtime of the MTGBLUP model was signifi-
cantly longer than that of the multitrait Bayesian models. 
Additionally, the three block partitioning strategies did 
not result in significant differences in model runtimes. In 
terms of memory usage, BayesR has the highest memory 
efficiency among all the models (Table  S6). When the 
reference population consists of 2,880 individuals, the 
peak memory usage of mbBayesABLD during runtime is 
approximately 2.14 GB, which is slightly greater than that 
of MTGBLUP (1.54 GB). Different genomic block parti-
tioning strategies have little effect on the memory usage 
of the multitrait Bayesian models.

Combining a large‑population breed and a small‑population 
breed
With respect to breeds with small populations, we 
hypothesized that the prediction accuracy would improve 
when these breeds were combined with international 
transboundary breeds with larger populations. Thus, 
our study examined the performance of mbBayesABLD 
when it was applied to two breeds with different popula-
tion sizes (3,000 and 600). Principal component analysis 
(PCA) revealed distinct genetic clustering between the 
simulated breeds that closely matched patterns observed 
in the empirical pig data (Fig. S7), demonstrating the reli-
ability of our genotype simulation. However, the consist-
ency of the LD pattern (Fig. S8) indicated that the LD 
pattern was conserved across breeds among SNP alleles 
at short distances (< 500 kbp).

As expected, pooling data from multiple breeds and 
performing genomic prediction using a single-trait ani-
mal model significantly reduced the prediction accu-
racy for the target breed (P < 0.05) (Table  S7). In all 
scenarios, MTGBLUP consistently outperformed STG-
BLUP in terms of prediction accuracy (Fig.  2). When 
the genetic correlation between breeds was 0.8, STGB-
LUP achieved a prediction accuracy of 0.61 for breed A, 
which represented the larger population. In contrast, the 
mbBayesABLD model attained a higher accuracy of 0.66, 
corresponding to a relative improvement of approxi-
mately 8.2%. In the same scenario, the prediction accu-
racy for breed B with a smaller population size increased 
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by 1.3%, indicating that joint prediction with mbBayes-
ABLD benefited both breeds. Although the BayesR 
model outperformed STGBLUP in prediction accuracy, 
it consistently showed lower accuracy than the three 
multi-trait Bayesian models. Across all scenarios, the 
mbBayesABLD model consistently achieved the highest 
prediction accuracy for breed B. The method of setting 
genetic correlations across different blocks (identical or 
uniform) did not significantly impact the ranking predic-
tion accuracy trends of the models, with mbBayesABLD 
consistently achieving the highest accuracy. Moreover, 
model performance remained largely unchanged, even 
when the global genetic correlation between breeds 
varied.

Combining multiple small‑population breeds
In this context, we investigated whether the inclusion 
of breed B and breed C contributes to the prediction 
of the breeding value of breed A. The results indicated 
that mbBayesABLD consistently achieved the highest 
prediction accuracy (Fig.  3). Compared with incor-
porating breed C, incorporating breed B into the ref-
erence population proved more beneficial for breed 
A. This aligns with expectations, as we partitioned 
regions using the genotypic combinations of A and 
B when simulating phenotypes. When the multitrait 
Bayesian model was applied, compared with including 
only one or two breeds in the reference, merging three 
breeds resulted in higher prediction accuracy for breed 
A. Across all reference population combinations, the 

BayesR model achieved higher prediction accuracy 
than STGBLUP, but its accuracy remained lower than 
those of MTGBLUP and mbBayesABLD. When the 
local genetic correlations between breeds were equal 
(identical), mbBayesABLD (0.43) achieved a 10% 
improvement in prediction accuracy compared with 
STGBLUP (0.39) when three breeds were merged. 
It is noteworthy that the lowest prediction accu-
racy was observed for STGBLUP when all available 
breeds were combined. In terms of prediction bias, 
the GBLUP model showed an inflation phenomenon, 
whereas the Bayesian models generally showed shrink-
age (Table S8). On average, compared with the Bayes-
ian models, the GBLUP models exhibited lower bias in 
MBGP analysis.

Public pig and bean data
Pig data of two breeds with different population sizes
We analyzed the collected pig dataset corresponding to 
the two breed simulation scenarios. The results showed 
that LL, a breed with a small population size, benefited 
more from the mbBayesABLD model than from MTGB-
LUP and BayesR, which is consistent with our simulation 
tests (Fig.  4). Additionally, compared with MTGBLUP, 
mbBayesABLD improved the prediction accuracies for 
the MS (0.19 vs. 0.22) and PFAI (0.19 vs. 0.22) traits of 
LL by 15.6% and 9.5%, respectively. Furthermore, the 
prediction accuracy of mbBayesABLD was significantly 
greater than that of mbBayesAB-fix and mbBayesAB-
lava. In the multitrait MBGP models, mbBayesABLD 

Fig. 2  Predictive accuracies of different models using two breeds simulation dataset. The reference for the models included individuals 
from both breed A and B. For the genetic correlations, we selected 10 genomic blocks with correlated marker effects across breeds. We designed 
two scenarios: in the ‘identical’ scenario, correlations are fixed within blocks; in the ‘uniform’ scenario, correlations are sampled from a U(−1, 1) 
distribution and adjusted to a specified mean. Three different average genetic correlation levels (0.2, 0.5, and 0.8) were set between breeds. The 
error bars represent the standard errors
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achieved the highest prediction accuracy in all scenarios. 
With respect to the MS trait of breed YY, mbBayesA-
BLD (0.21) achieved a 23.5% improvement in accuracy 
compared with mbBayesAB-lava (0.17), highlighting the 
critical importance of block partitioning strategies in fit-
ting the heterogeneous genetic (co)variance in MBGP. 
When GBLUP was applied in the MBGP, the results of 

the pig data analysis were similar to those of the simula-
tion study. Specifically, STGBLUP significantly decreased 
the prediction accuracy for the target breed (P < 0.05) 
(Table S9), whereas MTGBLUP outperformed STGBLUP 
(Fig.  4). Notably, compared with the other models, the 
mbBayesABLD model exhibited lower prediction bias for 
LL (Table S10).

Fig. 3  Predictive accuracies of different models for breed A using different reference populations. For example, A-B indicates individuals 
from both breeds A and B were included in the reference population. In all cases, the validation set consisted solely of individuals from breed A. 
For genetic correlations, we selected 10 genomic blocks with correlated marker effects across breeds. Two scenarios were explored: in the ‘identical’ 
scenario, correlations are fixed (0.2) within blocks; in the ‘uniform’ scenario, correlations are sampled from a U(−1, 1) distribution and adjusted 
to a specified mean (0.2). The error bars represent the standard errors

Fig. 4  Predictive accuracies of different models using real pig data. The dataset included two pig breeds, Yorkshire (YY) and Landrace (LL). The traits 
analyzed were marbling score (MS) and proportion of fat areas in the image (PFAI). The reference populations of the models included individuals 
from both YY and LL. The error bars represent the standard errors
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Bean data with multiple small‑population panels
As observed in the simulation, the consistency of the 
global LD pattern differed only slightly between breeds, 
with values ranging from 0.55 to 0.74 (Table  S9). The 
genetic distances between different bean panels were 
smaller than those between pig breeds. However, there 
were significant differences in allele frequencies between 
the panels, with ADP showing a negative correlation with 
the other two bean panels.

Consistent with the simulation study, we aimed to 
improve the prediction accuracy of VEC by incorporat-
ing data from the other two panels. For the yield and 
100SdW traits, merging the VEC and VEF panels into the 
reference population and applying the mbBayesABLD 
model achieved the highest prediction accuracy (Fig. 5). 
Compared with STGBLUP, mbBayesABLD improved the 
prediction accuracy for the yield and 100SdW traits by 
10.3% and 2%, respectively. When VEC and ADP were 
combined, the prediction accuracy of STGBLUP was 
0.21, whereas mbBayesABLD improved the prediction 
accuracy to 0.29. MTGBLUP outperformed both STGB-
LUP and BayesR in predicting the 100SdW trait, whereas 
for yield traits, its predictive accuracy was lower than 
that of the other two methods. Unexpectedly, the results 
indicated that incorporating all the panels together did 
not result in the highest prediction accuracy. For the trait 
100SdW, the STGBLUP results displayed a pattern con-
sistent with the simulation data, where including all pan-
els together led to the lowest prediction accuracy.

Discussion
In this study, we proposed the joint prediction model 
mbBayesABLD, which enables different breeds to share 
information more accurately in genome blocks divided 
on the basis of LD information. Compared with other 
joint prediction models, mbBayesABLD achieved supe-
rior prediction accuracy in both simulation and real data 
studies. Moreover, our results indicated that mbBayesA-
BLD improved the prediction accuracy for breeds with 
small populations in multibreed genomic prediction 
without compromising accuracy for other breeds.

When GBLUP was applied for joint prediction, the 
multitrait model significantly outperformed the single-
trait model in most cases, which is consistent with the 
findings of previous studies [17, 39]. However, the pre-
diction accuracy did not significantly improve compared 
with the within-breed predictions. In most cases, the 
multitrait Bayesian models that account for heterogene-
ous genetic (co)variance consistently achieved higher 
prediction accuracy than the other MGBP models did. 
With mbBayesABLD, the prediction accuracy improved 
by 21.3% for YY and 15.1% for LL compared with MTG-
BLUP. With respect to the 100SdW of the bean data, the 
improvement was even more obvious, with the predic-
tion accuracy increasing by 146%. Our findings strongly 
suggest that information sharing should be based on the 
magnitude of genetic correlations among breeds at differ-
ent genomic positions in joint prediction.

The global genetic correlations between breeds esti-
mated by Bayesian models were significantly lower than 

Fig. 5  Predictive accuracies of different models for panel VEC using different reference populations. The dataset included three panels: 
the newly composed climbing bean panel (VEC), the Andean diversity panel (ADP), and the elite Andean breeding panel (VEF). VEC-VEF denotes 
that individuals from panels VEC and VEF were included in the reference population. In all cases, the individuals used for validation were exclusively 
from VEC. The analyzed traits included 100-seed weight (100SdW) and Yield. The error bars represent the standard errors
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those obtained using GBLUP for the analysis of several 
traits (Table  S3 and Table  S4). In such cases, multitrait 
Bayesian models often demonstrated higher prediction 
accuracy than MTGBLUP did. This could be attributed 
to MTGBLUP’s tendency to overestimate global genetic 
correlations between breeds, thereby reducing its pre-
dictive performance. Our findings revealed that YY and 
LL exhibited negative global genetic correlations for the 
PFAI and MS traits. While no studies have reported on 
the genetic correlation between YY and LL for MS and 
PFAI to date, these two breeds are commonly used as 
maternal lines in production, which suggests that they 
may have positive genetic correlations. Therefore, fur-
ther research involving larger populations is neces-
sary to explore the genetic correlations between these 
two breeds. Additionally, we found that different block 
partitioning methods play a crucial role in incorporat-
ing heterogeneous genetic (co)variances. Our results 
demonstrated that mbBayesABLD yielded higher pre-
diction accuracy than mbBayesAB-fix and mbBayesAB-
lava did in both simulation and real data analysis. In the 
mbBayesAB-lava method, the emphasis on uniform block 
size, similar to mbBayesAB-fix, causes the breakpoints to 
deviate from the local LD trend changes (Fig. S6). This 
results in segmentations that significantly differ from the 
actual haplotype segments within the population [40], 
leading to the assembly of multiple haplotype fragments. 
Consequently, the accuracy of genetic correlation esti-
mates at that genomic position was affected, thereby lim-
iting the improvement in model prediction accuracy.

The correlation in allele frequencies is also a key factor 
affecting the performance of joint prediction [13]. In the 
bean dataset, the correlation for minor allele frequency 
between VEC and VEF was 0.02, whereas ADP was neg-
atively correlated with the other two panels. This could 
explain why the best prediction accuracy was observed 
when the VEC and VEF panels were combined. Joint 
prediction involves the merging of multiple breeds with 
different breeding histories, and the resulting changes in 
allele frequencies can significantly affect the accuracy of 
marker effect estimates. Additionally, adding ADP to the 
joint reference population reduced the prediction accu-
racy for VEC. Therefore, if a breed shows a negative allele 
frequency correlation with the target breed, its inclusion 
in the reference population is not recommended, as it 
may result in suboptimal prediction outcomes.

Several studies have demonstrated that the low consist-
ency of the LD pattern between SNPs and causative vari-
ants across populations can negatively impact genomic 
prediction when a combined population is used [14, 
41, 42]. Compared with allele frequency correlations, 
the consistency of the LD pattern among breeds was 
more stable across the two real datasets (Table S11). The 

Landrace and Yorkshire breeds were previously reported 
to exhibit an LD pattern correlation ≥ 0.80 for distances 
up to 0.1 Mbp [43], which is slightly greater than the 0.73 
estimated in this study. Our results revealed that directly 
merging multiple breeds led to lower prediction accuracy. 
Thus, we do not recommend the use of simple merging 
of multiple breeds for joint prediction when the consist-
ency of the LD pattern between breeds is lower than 0.8. 
However, our study demonstrated that an average con-
sistency in the LD pattern of 0.6 was sufficient to improve 
the prediction accuracy of the target breed when using 
the mbBayesABLD for MBGP. Notably, the optimal val-
ues of the LD window size (Nwin) and smoothing param-
eter (spar) were identified through systematic sensitivity 
analyses in this study. As these results were derived using 
a 50K-density SNP chip array, additional evaluation may 
be necessary to optimize these parameters under differ-
ent SNP densities.

In previous works, researchers have discussed the 
impact of consistency in LD among breeds on MBGP [42, 
44], but a method considering LD consistency between 
breeds has not yet been put into practice. Our study can 
easily incorporate this information by using the corre-
lation coefficient w to measure LD pattern consistency 
across breeds. However, our study has several limita-
tions. Notably, when the number of breeds exceeds two, 
adjustments to the model are necessary to handle a more 
general case. In addition, we assigned a prior covariance 
value of zero to the marker effects between breeds in this 
study. In cases where empirical information is reliable, 
researchers may consider setting informative prior values 
in the model [45]. We can explore the option of using LD 
consistency or other information to quantify genetic cor-
relations between breeds and to set nonzero covariance 
prior values. Although mbBayesABLD was validated only 
across a maximum of three breeds, the method is intrinsi-
cally applicable to analyses involving a substantially larger 
number of breeds without modification. However, the 
required computational resources, especially memory, 
increase rapidly with each additional breed. Conventional 
GBLUP implementations are expected to encounter even 
greater convergence challenges than mbBayesABLD when 
reference populations exceed three breeds. Consequently, 
analyses encompassing dozens of breeds may require 
weighted-integration strategies similar to those employed 
in multinational dairy cattle evaluations to balance compu-
tational feasibility and prediction accuracy [45].

Conclusion
There is increasing interest in breeds with small popu-
lations characterized by specific favorable traits, high-
lighting the importance of developing novel approaches 
for integrated multibreed prediction using all available 
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genotypic and phenotypic information. This study pro-
poses a new genomic block partitioning strategy, which 
is applied to fit heterogeneous genetic (co)variances in 
genomic prediction models. Analyses using both simu-
lated and real datasets demonstrate that the proposed 
mbBayesABLD model achieves higher prediction accu-
racy than existing multibreed genomic prediction meth-
ods do. This work provides a practical tool for improving 
multibreed genomic prediction and offers new 
insights for joint prediction across genetically diverse 
populations.
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