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Improving multibreed genomic prediction @

for breeds with small populations by modeling
heterogeneous genetic (co)variance blockwise
accounting for linkage disequilibrium
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Abstract

Background Multibreed genomic prediction (MBGP) is crucial for improving prediction accuracy for breeds

with small populations, for which limited data are often available. Recent studies have demonstrated that partition-
ing the genome into nonoverlapping blocks to model heterogeneous genetic (co)variance in multitrait models can
achieve higher joint prediction accuracy. However, the block partitioning method, a key factor influencing model
performance, has not been extensively explored.

Results We introduce mbBayesABLD, a novel Bayesian MBGP model that partitions each chromosome into nonover-
lapping blocks on the basis of linkage disequilibrium (LD) patterns. In this model, marker effects within each block are
assumed to follow normal distributions with block-specific parameters. We employ simulated data as well as empirical
datasets from pigs and beans to assess genomic prediction accuracy across different models using cross-validation.
The results demonstrate that mbBayesABLD significantly outperforms conventional MBGP models, such as GBLUP
and BayesR. For the meat marbling score trait in pigs, compared with GBLUP, which does not account for heterogene-
ous genetic (co)variance, mbBayesABLD improves the prediction accuracy for the small-population breed Landrace
by 15.6%. Furthermore, our findings indicate that a moderate level of similarity in LD patterns between breeds (with
an average correlation of 0.6) is sufficient to improve the prediction accuracy of the target breed.

Conclusions This study presents a novel LD block-based approach for multibreed genomic prediction. Our work
provides a practical tool for livestock breeding programs and offers new insights into leveraging genetic diversity
across breeds for improved genomic prediction.

Keywords Heterogeneous genetic (co)variance, Linkage disequilibrium, Multibreed genomic prediction, Multitrait
Bayesian model, Small-population breed
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Background

Genomic prediction is a method that uses genetic mark-
ers across the entire genome to estimate genomic breeding
values [1]. Genomic prediction has demonstrated marked
effectiveness in animal and plant breeding [2, 3], particularly
in international transboundary breeds with large reference
populations [4]. However, for breeds with small popula-
tions and unique genetic characteristics, the challenge lies in
establishing a sufficiently large reference population [5-7].
Additionally, similar difficulties arise in establishing refer-
ence populations of sufficient size for traits that are difficult
to measure [8, 9]. The prediction accuracy of genomic breed-
ing values cannot be reliably guaranteed when an adequately
large reference population is unavailable [10].

To address these issues, an increasing number of stud-
ies have leveraged information from multiple breeds for
genomic prediction (MBGP) [11-13]. Unlike multi-popu-
lation joint prediction, different breeds usually do not share
common ancestors, making it impossible to conduct joint
evaluation through pedigree connections. The reduced
cost of genotyping and the emergence of genomic pre-
diction techniques have provided new opportunities for
MBGP. The traditional approach to MBGP involves treat-
ing different breeds as purebred populations and applying
conventional univariate models [14, 15]. However, owing
to differences in linkage disequilibrium (LD) patterns and
allele frequencies among breeds, simply merging data
from different breeds often results in lower accuracy than
within-breed genomic prediction [16—-18].

The multi-trait model offers a more promising
approach for MBGP by treating the same traits in differ-
ent breeds as distinct but potentially correlated traits of
a single breed [19, 20]. This method can flexibly account
for the genetic correlations between traits in different
breeds. Significant genetic heterogeneity in cholesterol
traits across ancestries has been reported, with SNP
showing concordant effects more frequently found in
certain genomic regions, such as regulatory regions [21].
Additionally, a study on beef cattle revealed differences in
the degree of genetic correlation between breeds across
different genomic regions [22]. Compared with within-
breed prediction, the incorporation of heterogeneous
genetic (co)variance in MBGP has been shown to achieve
higher accuracy [18], where genome partitioning employs
a fixed number of adjacent SNPs. However, the genomic
regions defined by this partitioning method may not
accurately represent true haplotype segments, potentially
affecting the model’s predictive performance. In a recent
study, a multibreed genomic prediction model that incor-
porates local genetic correlations was developed [23].
However, this model categorizes the genome into only
three types of regions: those with positive, negative, or
neutral correlations. By assuming these fixed correlation
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values across the entire genome, this model potentially
limits its overall predictive performance.

In this study, we developed an MBGP BayesA model
accounting for blockwise heterogeneous genetic (co)vari-
ance based on linkage disequilibrium (mbBayesABLD),
which enhances interbreed information sharing by utilizing
within-block genetic correlations. Through extensive evalu-
ations using both simulated datasets and real data from ani-
mal and plant populations, we demonstrate that compared
with conventional joint prediction models, mbBayesABLD
consistently achieves higher prediction accuracy.

Methods

Datasets

Simulation

We simulated two multibreed pig populations with
growth rate traits using QMSim (v1.10) software [24]:
one with two breeds of different population sizes and
another with three breeds of equal population sizes (Fig.
S1). Different mating designs and selection criteria were
used for individuals from a common historical popula-
tion, resulting in different LD patterns and allele frequen-
cies (Table 1). For the last three generations of all the
breeds, two individuals per litter were randomly selected
for further analysis. In the two-breed simulation, 3,000
individuals from breed A and 600 from breed B were
simulated. In the three-breed simulation, 600 individuals
were simulated for each breed. A total of 50,058 evenly
distributed SNPs across the genome were selected for
further analysis.

Heterogeneous genetic (co)variance was simulated by
generating phenotypes using custom R scripts. SNPs
were grouped according to the genome partitioning
method proposed in this study. We randomly selected
300 blocks and chose one SNP per block as a QTL,
assuming uncorrelated effects. Additionally, 10 blocks
were randomly selected, with 10 SNPs per block cho-
sen as QTLs, assuming that the correlation of these
QTL effects between breeds is represented by r,. For
re two scenarios were considered: one with a constant
Te mean (referred to as ‘identical’) and another sampled
from a uniform distribution U(-1, 1) and adjusted to
Tg mean (referred to as ‘uniform’). In the two-breed
simulation, 7, c,, Was set to 0.2, 0.5, or 0.8, whereas
in the three-breed simulation, r, ., was set to 0.2.
The two-breed simulation results indicate that, under
our settings, heritability had little effect on prediction
accuracy. Phenotypes were simulated by adding fixed
breed effects and random residual effects to the addi-
tive genetic effects. The entire simulation process was
repeated 20 times. Details of the simulation are pro-
vided in the Supplemental Methods (Additional file 1).
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Table 1 Parameters in the simulation of genotypes and
phenotypes across different breeds

Scenarios Breed Gen Sel Ning h? Mean
Two A 40 phen/h 3,000 0.5 1.0
breeds g 10 md 600 03 05
Three A 70 md 600 0.5 15
breeds g 40 phen/h 600 04 10

@ 10 phen/I 600 0.3 0.5

Gen refers to the number of generations during the second phase of breed
formation, following the selection of founder populations from historical
populations for each breed. During the same phase, Sel refers to the individual
selection criteria, where ‘phen/h’indicates selecting individuals with high
phenotypic value, ‘phen/I'indicates selecting individuals with low phenotypic
value, rnd means random selection of individuals, N, 4 is the number of
individuals used for genomic prediction, and h? is the heritability of traits.

The mean corresponds to the population mean used in the simulation of the
phenotypes

Real data

Using two public datasets, we analyzed four traits from
livestock and plants (Table 2). The pig dataset contains
two breeds, Yorkshire (YY) and Landrace (LL), with 641
and 228 observations, respectively [25]. The pigs were
raised under a consistent feeding environment, provided
with the same commercial diets and free access to water,
and were slaughtered under standardized conditions. A
total of 37,304 markers were retained after quality con-
trol procedures. The phenotypic data included two meat
quality traits: the marbling score (MS) and the propor-
tion of fat areas in the image (PFAI). The bean dataset
consisted of three small-population panels: the newly
composed climbing bean panel (VEC), the Andean
diversity panel (ADP), and the elite Andean breeding
panel (VEF) [26]. The numbers of individuals in the
three panels were 344, 357 and 587. Two agronomic
traits, 100-seed weight (100SdW) and yield, were used
in the bean dataset. The heritability of all the traits was

Table 2 Summary description of the two real datasets
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estimated using a single-trait GBLUP model to pro-
vide insights into their genetic architecture (Table 2).
Detailed descriptions of each dataset are available in the
Supplemental Methods (Additional file 1).

Genomic structure analysis

Genetic differences between breeds are a key factor influ-
encing combined predictions. Firstly, we generated PCA
plots using genotype data by PLINK (v1.90) [27]. Using
the LD metric 7* calculated in PLINK, we computed the
correlation coefficients of > for all the SNP pairs within
a 10-Mbp window (R10Mbp) to assess the consistency of
the LD pattern [28]. Additionally, we calculated the Pear-
son correlation coefficients between the allele frequencies
of all the populations on the basis of the SNP markers that
segregated simultaneously in both populations.

mbBayesABLD model
To model heterogeneous genetic (co)variance across different
genomic blocks, we employed a multitrait BayesA model:

.
=X;b; + Z?=Izj=llziﬂ”iﬂ +e;

where y; is the phenotype vector of breed /, with cor-
rected phenotypes in the bean dataset and raw pheno-
types in other datasets. Vector by is the fixed effect(s) of
breed / with a uniform prior. For the bean and simulation
dataset, only the population mean was considered a fixed
effect, while an additional fixed effect for sex was included
in the pig dataset. The number s is the number of blocks
across all chromosomes, m1; is the number of SNPs in
block i, a;; is the allelic substitution effect of breed / at
SNP j within block 7, and z;; is a column vector where all
values represent the minor allele count (0, 1 and 2 for gen-
otypes AA, Aa and aa, respectively) for SNP j. This effect

Dataset Nsnp Traits Breed Ning Phenotype Heritability
Pig 37,304 PFAI YY 641 2.02(1.26) 0.22 (0.07)
LL 228 237( 42) 031(016)
MS Yy 641 43 (0.48) 9(0.07)
LL 228 1.57 (0.54) 0.33(0.16)
Bean 14913 Yield VEC 344 2,049.09 (323.09) 0.56 (0.08)
ADP 357 1,009.93 (172.36) 049 (0.05)
VEF 587 1,089.98 (235.58) 0.64(0.06)
100SdW VEC 344 40.88 (6.20) 0.20 (0.07)
ADP 352 3891 (6.08) 0.58(0.05)
VEF 562 39.68 (4.66) 9(0.06)

In terms of the analyzed traits, PFAI is the proportion of fat areas in the image, MS is the marbling score and 100SdW is the 100-seed weight of the bean. In the
analyzed population, YY represents Yorkshire pigs, LL represents Landrace pigs, VEC represents the newly composed climbing bean panel, ADP represents the
Andean diversity panel, and VEF represents the elite Andean breeding panel. Ngy, represents the number of SNPs used in this study, and N;, 4 represents the number
of individuals with both phenotype and genotype information. The phenotypes are presented as the mean (standard deviation). Heritability was estimated using a

single-trait GBLUP model and is reported as the mean (standard error)
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follows a multivariate normal distribution with the prior
marker effect in block i being N (0, G;), where G; is the
(co)variance matrix of all marker effects within the block,
with a prior inverse Wishart distribution /W (df ,B;). In
a recent study, we demonstrated that specifying the scale
matrix B; of the inverse Wishart (IW) prior distribution
from the phenotype can achieve higher prediction accu-
racy than using noninformative hyperparameters [18].
Therefore, B; = h*P/[s(df — 1)2;”;12;9;(1 —p)l  was
used in this study, where df =4 + p, p is the number
of breeds, and /2 is the prior of heritability, which was
set to 0.5, a moderately informative and neutral value
commonly used in practice. P is a diagonal matrix with
phenotypic variance along the diagonal, p; is the allele
frequency of SNP j in block i across breeds, and e is the
residual effect vector that follows N (0,I,, ® Ry), where n
is the numbgr of individuals, and Ry ~ IW (df , Rp), with
R, = (1 — 1 )P/(df — 1). Then, the full conditional pos-
terior distributions for b, a, Ry and G; were as follows:
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between M; and M;, where N, is a parameter used to
control the SNP farthest from k that needs to be consid-
ered when the correlation coefficient is calculated. In the
simulation study, we found that setting N,;, to 50 yielded
a relatively optimal prediction accuracy (Fig. S2). my is
the number of all vector pairs that match the value range
of i and j. We provide a small example illustrating the
detailed calculation process for wy in Fig. 1.
Theoretically, the metric wy ranges from 0 to 1, with
higher values indicating stronger linkages between SNP
k and its flanking SNPs on both sides. After obtain-
ing the w vector for a chromosome, we applied the
smooth.spline function provided by R’s stats package to
achieve curve smoothing [30]. On the basis of LD cal-
culations and visualization using real genotype data,
we found that setting the smoothing parameter spar to
0.2 resulted in moderate smoothing of the w vector and
facilitated the identification of LD block breakpoints
(Fig. S3). We then searched the entire chromosome

P(b|ELSE) o« N[(X'R™IX)"IX'R~1y*, (X’R71X) 1]
’ -1 ’ ’ -1
P(ag|ELSE) o N | (MyRTIM; + B[') MR-y, (MYRIM; + B!)

mi
P(G{|ELSE) oc IW {df + m, (Z ayal; + B,-)]

P(Ro|ELSE) o< IW {df +n,

i=1
n

(Foe)
i=1

R = In®ROr J’* =J- Z_?zl M}kai
M =L®M, y' =y —Xb— Z;;éi Mja,

where M; is the genotype matrix coded as 0, 1, 2 for the
minor allele, and y* and y™ are vectors of corrected phe-
notypic values. The missing phenotypes were imputed
according to the method proposed by Gianola and Fer-
nando [29]. For more detailed information about the
derivation of the posterior distribution, refer to the Sup-
plemental Methods.

A key feature of our model is the application of a
novel genome block partitioning method when hetero-
geneous genetic (co)variance is incorporated. First, we
calculated a statistic w; based on the LD to determine
whether a given position is suitable as a breakpoint:

1
W = — Corr[M;, M;]?
k my Z [M; 1]

where wy (k = 1,--- ,m) is the statistic w of SNP k and m
is the number of SNPs on the chromosome that need to be
divided into blocks. M; (i = max{1,k — Ny, + 1},--- , k)
is column i of the genotype matrix M, coded as 0, 1 or
2 for genotypes AjA;, AjA, and A,A,, respectively. M;
is similar to M; and j=k+1,---,min{i + Nyin, m}.
Corr[M;,M;] is the Pearson correlation coefficient

for local minima, using these as breakpoints for block
delineation. Thus, regional partitioning utilized com-
bined genotype information from all the breeds in the
reference population.

Models used for comparative analysis

In previous studies, we compared the accuracy of within-
breed and multibreed genomic prediction models [18].
Building on those findings, this study focuses specifically
on multibreed approaches and investigates the advan-
tages of the mbBayesABLD model over other multibreed
genomic prediction methods.

Bayesian models

In addition to mbBayesABLD with our proposed
block partitioning method, two additional strategies
were implemented to segment chromosomes in the
mbBayesAB framework. First, the haplotype defini-
tion method (https://github.com/cadeleeuw/lava-parti
tioning) was applied to segment the chromosomes [31],
with a minimum requirement of 100 SNPs per block.
This method also uses LD information to determine
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Fig. 1 Procedure for genomic block partitioning based on linkage disequilibrium (LD). The values (0, 1, or 2) in the SNP content matrix represent
the number of minor alleles in an individual at the given locus, while Cor(S/\/P,-, S/\/Pj) represents the Pearson correlation coefficients of the allele
content for markers j and j. w represents the average correlation coefficient between all SNP pairs on both sides of a given SNP, where the distance
between the pairs falls within the window (win), assuming that this SNP serves as the genomic partition breakpoint. This value reflects the degree

of linkage disequilibrium between SNPs on both sides of the specified SNP

breakpoints but emphasizes maintaining consistent
block lengths. We refer to this model as mbBayesAB-
lava in the subsequent sections. Additionally, a simpler
strategy based on a fixed number of SNPs (mbBayesAB-
fix) was used for comparison. The number of SNPs in
this strategy was set to 100, as this configuration dem-
onstrated optimal performance in previous studies [32,
33]. The comparative analysis also included BayesR
[34], a model that accounts for variance heterogeneity
by assuming that SNP effects follow a mixture of four
normal distributions. The single-trait BayesR model
was applied to the MBGP using a reference population
created by merging multiple breeds, implemented with
the publicly available BayesR software (https://github.
com/syntheke/bayesR) under default settings.

The three models (mbBayesAB-fix, mbBayesAB-lava,
and mbBayesABLD) accounting for heterogeneous
genetic (co)variances in this study were implemented and
estimated using our in-house software package mbBayes-
ABLD, which is freely available for download and use
from our GitHub repository: https://github.com/CAU-
TeamLiuJF/MBGP_CV/tree/main/mbBayesABLD. Anal-
ysis of the posterior samples indicated that increasing the
number of iterations beyond 30,000 led to highly con-
sistent outcomes across the Bayesian models (Table S1).
Therefore, in the analysis of the Bayesian models, the
Gibbs sampler ran for 30,000 cycles, with the first 20,000

cycles treated as burn-in and a thinning interval of ten
cycles. The same iteration settings were also used in the
BayesR analysis.

GBLUP models
Two GBLUP models were applied for MBGP: STGB-
LUP and MTGBLUP. The general model was defined as:

y=Xb+Za-+e

where a is the vector of genomic breeding values, and
the other terms are specified as in mbBayesABLD. In
STGBLUP, all breeds in the reference population were
treated as a single population with a shared genetic back-
ground, and single-trait GBLUP was applied, assum-
ing a~N(0,Go2), where G is the genomic relationship
matrix (GRM) and o is the additive genetic variance. In
MTGBLUP, the same trait measured across breeds was
modeled as distinct traits, with a~ N (0, Gy ® G), where
G is the (co)variance matrix of genomic breeding values
between traits. The GRM was constructed following the
method of VanRaden [35] implemented in GMAT soft-
ware (https://github.com/chaoning/GMAT), using allele
frequencies from the joint reference population [36, 37].
Variance components and GEBVs were estimated with
DMUAI program of the DMU software [38].
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Cross-validation and model performance assessment

The same MBGP models were applied to both the sim-
ulated and real datasets to enable comparative perfor-
mance evaluation across different data structures (Fig.
S4). Five-fold cross-validation (CV) was employed to
assess the accuracy and unbiasedness of the GEBVs.
The CV process was repeated five times in the simula-
tion and ten times in the real datasets. The same valida-
tion subsets were applied across all the models with the
reference population formed by merging the respective
breeds (Table S2). Prediction accuracy and unbiased-
ness were assessed by calculating the correlation and
regression coefficients between the GEBVs and the
pre-adjusted phenotypes (or true breeding values in
simulations) for the validation individuals. Refer to the
Supplemental Methods (Additional file 1) for details
on the CV procedure. Paired ¢-test was performed to
assess the statistical significance of mean differences.
The computational efficiency of the different models
was compared by measuring the runtime and aver-
age peak memory consumption for all MBGP models
included in the simulation study.

Results

Effects of genome segmenting on multibreed prediction
accuracy

For MBGP of PFAI, MS, and yield traits, the global
genetic correlation estimates from the Bayesian model
were significantly lower than those from the MTGB-
LUP (Tables S3 and S4). Notably, the mbBayesABLD
model achieved a significant improvement in predic-
tion accuracy compared with the MTGBLUP model
in the analysis of these traits. The estimates of local
genetic correlations indicate that genetic correlations
vary significantly across different genomic blocks (Fig.
S5). We visualized the breakpoint definitions used in
the mbBayesABLD and mbBayesAB-lava models (Fig.
S6). When an extremely low local w value was obtained,
the correlation between the SNP on either side of the
position was considered weak, suggesting a potential
breakpoint between the two haplotype fragments. A
comparison of the breakpoints identified by mbBayesA-
BLD and mbBayesAB-lava revealed that those defined
by mbBayesABLD typically appeared at positions where
local LD trends changed. Some breakpoints identified
by mbBayesAB-lava were similar to those in mbBayes-
ABLD, whereas others appeared at the rising or falling
points of the curve. Notably, we found that using the
merged population as the reference panel yielded the
highest prediction accuracy when block partitioning
was conducted.
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Simulation datasets

Software runtime and memory usage

Simulated data were used to evaluate the computa-
tional speed (Table S5). All the models were run using
a single core. For joint prediction for two breeds, the
computational speed of the multitrait Bayesian models
(mbBayesAB-fix, mbBayesAB-lava, and mbBayesABLD)
was comparable to that of the MTGBLUP model. Nota-
bly, when the reference population included all three
breeds, the runtime of the MTGBLUP model was signifi-
cantly longer than that of the multitrait Bayesian models.
Additionally, the three block partitioning strategies did
not result in significant differences in model runtimes. In
terms of memory usage, BayesR has the highest memory
efficiency among all the models (Table S6). When the
reference population consists of 2,880 individuals, the
peak memory usage of mbBayesABLD during runtime is
approximately 2.14 GB, which is slightly greater than that
of MTGBLUP (1.54 GB). Different genomic block parti-
tioning strategies have little effect on the memory usage
of the multitrait Bayesian models.

Combining a large-population breed and a small-population
breed

With respect to breeds with small populations, we
hypothesized that the prediction accuracy would improve
when these breeds were combined with international
transboundary breeds with larger populations. Thus,
our study examined the performance of mbBayesABLD
when it was applied to two breeds with different popula-
tion sizes (3,000 and 600). Principal component analysis
(PCA) revealed distinct genetic clustering between the
simulated breeds that closely matched patterns observed
in the empirical pig data (Fig. S7), demonstrating the reli-
ability of our genotype simulation. However, the consist-
ency of the LD pattern (Fig. S8) indicated that the LD
pattern was conserved across breeds among SNP alleles
at short distances (< 500 kbp).

As expected, pooling data from multiple breeds and
performing genomic prediction using a single-trait ani-
mal model significantly reduced the prediction accu-
racy for the target breed (P<0.05) (Table S7). In all
scenarios, MTGBLUP consistently outperformed STG-
BLUP in terms of prediction accuracy (Fig. 2). When
the genetic correlation between breeds was 0.8, STGB-
LUP achieved a prediction accuracy of 0.61 for breed A,
which represented the larger population. In contrast, the
mbBayesABLD model attained a higher accuracy of 0.66,
corresponding to a relative improvement of approxi-
mately 8.2%. In the same scenario, the prediction accu-
racy for breed B with a smaller population size increased
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by 1.3%, indicating that joint prediction with mbBayes-
ABLD benefited both breeds. Although the BayesR
model outperformed STGBLUP in prediction accuracy,
it consistently showed lower accuracy than the three
multi-trait Bayesian models. Across all scenarios, the
mbBayesABLD model consistently achieved the highest
prediction accuracy for breed B. The method of setting
genetic correlations across different blocks (identical or
uniform) did not significantly impact the ranking predic-
tion accuracy trends of the models, with mbBayesABLD
consistently achieving the highest accuracy. Moreover,
model performance remained largely unchanged, even
when the global genetic correlation between breeds
varied.

Combining multiple small-population breeds

In this context, we investigated whether the inclusion
of breed B and breed C contributes to the prediction
of the breeding value of breed A. The results indicated
that mbBayesABLD consistently achieved the highest
prediction accuracy (Fig. 3). Compared with incor-
porating breed C, incorporating breed B into the ref-
erence population proved more beneficial for breed
A. This aligns with expectations, as we partitioned
regions using the genotypic combinations of A and
B when simulating phenotypes. When the multitrait
Bayesian model was applied, compared with including
only one or two breeds in the reference, merging three
breeds resulted in higher prediction accuracy for breed
A. Across all reference population combinations, the

Identical

0.65

0.60

Page 7 of 12

BayesR model achieved higher prediction accuracy
than STGBLUP, but its accuracy remained lower than
those of MTGBLUP and mbBayesABLD. When the
local genetic correlations between breeds were equal
(identical), mbBayesABLD (0.43) achieved a 10%
improvement in prediction accuracy compared with
STGBLUP (0.39) when three breeds were merged.
It is noteworthy that the lowest prediction accu-
racy was observed for STGBLUP when all available
breeds were combined. In terms of prediction bias,
the GBLUP model showed an inflation phenomenon,
whereas the Bayesian models generally showed shrink-
age (Table S8). On average, compared with the Bayes-
ian models, the GBLUP models exhibited lower bias in
MBGP analysis.

Public pig and bean data

Pig data of two breeds with different population sizes

We analyzed the collected pig dataset corresponding to
the two breed simulation scenarios. The results showed
that LL, a breed with a small population size, benefited
more from the mbBayesABLD model than from MTGB-
LUP and BayesR, which is consistent with our simulation
tests (Fig. 4). Additionally, compared with MTGBLUP,
mbBayesABLD improved the prediction accuracies for
the MS (0.19 vs. 0.22) and PFAI (0.19 vs. 0.22) traits of
LL by 15.6% and 9.5%, respectively. Furthermore, the
prediction accuracy of mbBayesABLD was significantly
greater than that of mbBayesAB-fix and mbBayesAB-
lava. In the multitrait MBGP models, mbBayesABLD
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[ IMTGBLUP
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[ |mbBayesAB-lava
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Fig. 2 Predictive accuracies of different models using two breeds simulation dataset. The reference for the models included individuals
from both breed A and B. For the genetic correlations, we selected 10 genomic blocks with correlated marker effects across breeds. We designed
two scenarios: in the ‘identical’ scenario, correlations are fixed within blocks; in the ‘uniform’scenario, correlations are sampled from a U(-1, 1)
distribution and adjusted to a specified mean. Three different average genetic correlation levels (0.2, 0.5, and 0.8) were set between breeds. The

error bars represent the standard errors
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Fig. 3 Predictive accuracies of different models for breed A using different reference populations. For example, A-B indicates individuals

from both breeds A and B were included in the reference population. In all cases, the validation set consisted solely of individuals from breed A.

For genetic correlations, we selected 10 genomic blocks with correlated marker effects across breeds. Two scenarios were explored: in the ‘identical’
scenario, correlations are fixed (0.2) within blocks; in the ‘uniform’scenario, correlations are sampled from a U(—1, 1) distribution and adjusted

to a specified mean (0.2). The error bars represent the standard errors

achieved the highest prediction accuracy in all scenarios.
With respect to the MS trait of breed YY, mbBayesA-
BLD (0.21) achieved a 23.5% improvement in accuracy
compared with mbBayesAB-lava (0.17), highlighting the
critical importance of block partitioning strategies in fit-
ting the heterogeneous genetic (co)variance in MBGP.
When GBLUP was applied in the MBGP, the results of

the pig data analysis were similar to those of the simula-
tion study. Specifically, STGBLUP significantly decreased
the prediction accuracy for the target breed (P<0.05)
(Table S9), whereas MTGBLUP outperformed STGBLUP
(Fig. 4). Notably, compared with the other models, the
mbBayesABLD model exhibited lower prediction bias for
LL (Table S10).

YY LL
0.25- 8
i 1 | Model
[ ]BayesR
ol LD
%) 1 1 [7]STGBLUP
g 1] [ ]MTGBLUP
§ 0.15- | [[] mbBayesAB-fix
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0.10
MS PFAI MS PFAI

Trait

Fig. 4 Predictive accuracies of different models using real pig data. The dataset included two pig breeds, Yorkshire (YY) and Landrace (LL). The traits
analyzed were marbling score (MS) and proportion of fat areas in the image (PFAI). The reference populations of the models included individuals

from both YY and LL. The error bars represent the standard errors
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Bean data with multiple small-population panels

As observed in the simulation, the consistency of the
global LD pattern differed only slightly between breeds,
with values ranging from 0.55 to 0.74 (Table S9). The
genetic distances between different bean panels were
smaller than those between pig breeds. However, there
were significant differences in allele frequencies between
the panels, with ADP showing a negative correlation with
the other two bean panels.

Consistent with the simulation study, we aimed to
improve the prediction accuracy of VEC by incorporat-
ing data from the other two panels. For the yield and
100SdW traits, merging the VEC and VEF panels into the
reference population and applying the mbBayesABLD
model achieved the highest prediction accuracy (Fig. 5).
Compared with STGBLUP, mbBayesABLD improved the
prediction accuracy for the yield and 100SdW traits by
10.3% and 2%, respectively. When VEC and ADP were
combined, the prediction accuracy of STGBLUP was
0.21, whereas mbBayesABLD improved the prediction
accuracy to 0.29. MTGBLUP outperformed both STGB-
LUP and BayesR in predicting the 100SdW trait, whereas
for yield traits, its predictive accuracy was lower than
that of the other two methods. Unexpectedly, the results
indicated that incorporating all the panels together did
not result in the highest prediction accuracy. For the trait
100SdW, the STGBLUP results displayed a pattern con-
sistent with the simulation data, where including all pan-
els together led to the lowest prediction accuracy.

Yield
. ) 0.70-
)
8 o02-
5
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Discussion

In this study, we proposed the joint prediction model
mbBayesABLD, which enables different breeds to share
information more accurately in genome blocks divided
on the basis of LD information. Compared with other
joint prediction models, mbBayesABLD achieved supe-
rior prediction accuracy in both simulation and real data
studies. Moreover, our results indicated that mbBayesA-
BLD improved the prediction accuracy for breeds with
small populations in multibreed genomic prediction
without compromising accuracy for other breeds.

When GBLUP was applied for joint prediction, the
multitrait model significantly outperformed the single-
trait model in most cases, which is consistent with the
findings of previous studies [17, 39]. However, the pre-
diction accuracy did not significantly improve compared
with the within-breed predictions. In most cases, the
multitrait Bayesian models that account for heterogene-
ous genetic (co)variance consistently achieved higher
prediction accuracy than the other MGBP models did.
With mbBayesABLD, the prediction accuracy improved
by 21.3% for YY and 15.1% for LL compared with MTG-
BLUP. With respect to the 100SdW of the bean data, the
improvement was even more obvious, with the predic-
tion accuracy increasing by 146%. Our findings strongly
suggest that information sharing should be based on the
magnitude of genetic correlations among breeds at differ-
ent genomic positions in joint prediction.

The global genetic correlations between breeds esti-
mated by Bayesian models were significantly lower than

100SdW

T Reference

[] VEC-VEF
T I VEC-ADP
[] VEC-ADP-VEF

'th '77[)8 '77bB
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7

Fig. 5 Predictive accuracies of different models for panel VEC using different reference populations. The dataset included three panels:

the newly composed climbing bean panel (VEC), the Andean diversity panel (ADP), and the elite Andean breeding panel (VEF). VEC-VEF denotes
that individuals from panels VEC and VEF were included in the reference population. In all cases, the individuals used for validation were exclusively
from VEC. The analyzed traits included 100-seed weight (100SdW) and Yield. The error bars represent the standard errors
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those obtained using GBLUP for the analysis of several
traits (Table S3 and Table S4). In such cases, multitrait
Bayesian models often demonstrated higher prediction
accuracy than MTGBLUP did. This could be attributed
to MTGBLUP’s tendency to overestimate global genetic
correlations between breeds, thereby reducing its pre-
dictive performance. Our findings revealed that YY and
LL exhibited negative global genetic correlations for the
PFAI and MS traits. While no studies have reported on
the genetic correlation between YY and LL for MS and
PFAI to date, these two breeds are commonly used as
maternal lines in production, which suggests that they
may have positive genetic correlations. Therefore, fur-
ther research involving larger populations is neces-
sary to explore the genetic correlations between these
two breeds. Additionally, we found that different block
partitioning methods play a crucial role in incorporat-
ing heterogeneous genetic (co)variances. Our results
demonstrated that mbBayesABLD yielded higher pre-
diction accuracy than mbBayesAB-fix and mbBayesAB-
lava did in both simulation and real data analysis. In the
mbBayesAB-lava method, the emphasis on uniform block
size, similar to mbBayesAB-fix, causes the breakpoints to
deviate from the local LD trend changes (Fig. S6). This
results in segmentations that significantly differ from the
actual haplotype segments within the population [40],
leading to the assembly of multiple haplotype fragments.
Consequently, the accuracy of genetic correlation esti-
mates at that genomic position was affected, thereby lim-
iting the improvement in model prediction accuracy.

The correlation in allele frequencies is also a key factor
affecting the performance of joint prediction [13]. In the
bean dataset, the correlation for minor allele frequency
between VEC and VEF was 0.02, whereas ADP was neg-
atively correlated with the other two panels. This could
explain why the best prediction accuracy was observed
when the VEC and VEF panels were combined. Joint
prediction involves the merging of multiple breeds with
different breeding histories, and the resulting changes in
allele frequencies can significantly affect the accuracy of
marker effect estimates. Additionally, adding ADP to the
joint reference population reduced the prediction accu-
racy for VEC. Therefore, if a breed shows a negative allele
frequency correlation with the target breed, its inclusion
in the reference population is not recommended, as it
may result in suboptimal prediction outcomes.

Several studies have demonstrated that the low consist-
ency of the LD pattern between SNPs and causative vari-
ants across populations can negatively impact genomic
prediction when a combined population is used [14,
41, 42]. Compared with allele frequency correlations,
the consistency of the LD pattern among breeds was
more stable across the two real datasets (Table S11). The

Page 10 of 12

Landrace and Yorkshire breeds were previously reported
to exhibit an LD pattern correlation >0.80 for distances
up to 0.1 Mbp [43], which is slightly greater than the 0.73
estimated in this study. Our results revealed that directly
merging multiple breeds led to lower prediction accuracy.
Thus, we do not recommend the use of simple merging
of multiple breeds for joint prediction when the consist-
ency of the LD pattern between breeds is lower than 0.8.
However, our study demonstrated that an average con-
sistency in the LD pattern of 0.6 was sufficient to improve
the prediction accuracy of the target breed when using
the mbBayesABLD for MBGP. Notably, the optimal val-
ues of the LD window size (N,;,) and smoothing param-
eter (spar) were identified through systematic sensitivity
analyses in this study. As these results were derived using
a 50K-density SNP chip array, additional evaluation may
be necessary to optimize these parameters under differ-
ent SNP densities.

In previous works, researchers have discussed the
impact of consistency in LD among breeds on MBGP [42,
44], but a method considering LD consistency between
breeds has not yet been put into practice. Our study can
easily incorporate this information by using the corre-
lation coefficient w to measure LD pattern consistency
across breeds. However, our study has several limita-
tions. Notably, when the number of breeds exceeds two,
adjustments to the model are necessary to handle a more
general case. In addition, we assigned a prior covariance
value of zero to the marker effects between breeds in this
study. In cases where empirical information is reliable,
researchers may consider setting informative prior values
in the model [45]. We can explore the option of using LD
consistency or other information to quantify genetic cor-
relations between breeds and to set nonzero covariance
prior values. Although mbBayesABLD was validated only
across a maximum of three breeds, the method is intrinsi-
cally applicable to analyses involving a substantially larger
number of breeds without modification. However, the
required computational resources, especially memory,
increase rapidly with each additional breed. Conventional
GBLUP implementations are expected to encounter even
greater convergence challenges than mbBayesABLD when
reference populations exceed three breeds. Consequently,
analyses encompassing dozens of breeds may require
weighted-integration strategies similar to those employed
in multinational dairy cattle evaluations to balance compu-
tational feasibility and prediction accuracy [45].

Conclusion

There is increasing interest in breeds with small popu-
lations characterized by specific favorable traits, high-
lighting the importance of developing novel approaches
for integrated multibreed prediction using all available
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genotypic and phenotypic information. This study pro-
poses a new genomic block partitioning strategy, which
is applied to fit heterogeneous genetic (co)variances in
genomic prediction models. Analyses using both simu-
lated and real datasets demonstrate that the proposed
mbBayesABLD model achieves higher prediction accu-
racy than existing multibreed genomic prediction meth-
ods do. This work provides a practical tool for improving
multibreed genomic prediction and offers new
insights for joint prediction across genetically diverse
populations.

Abbreviations

100SdW  100-Seed weight

ADP Andean diversity panel

cv Cross-validation

LD Linkage disequilibrium

LL Landrace

MBGP Multiple breeds for genomic prediction
MS Marbling score

PCA Principal component analysis

PFAI The proportion of fat areas in the image
VEC The newly composed climbing bean panel
VEF The elite Andean breeding panel

YY Yorkshire

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/540104-025-01303-9.

Additional file 1: Fig. S1. Schematic representation of the simulated popu-
lation structure. Fig. S2. Effect of parameter N,;,, on prediction accuracy in
the simulation. Fig. S3. Effect of smoothing parameter spar on w-vector
curves and LD block breakpoint identification. Fig. S4. Partitioning of
reference (training) and validation populations in cross-validation. Fig. S5.
Genetic correlations between Yorkshire (YY) and Landrace (LL) in analyzed
traits. Fig. S6. Breakpoints of regional partitioning strategies employed by
the mbBayesABLD (red) and mbBayesAB-lava (blue) models on a chromo-
some. Fig. S7. Individuals clustered based on principal components analy-
sis using genotypes. Fig. S8. Changes in correlations of linkage disequilib-
rium coefficient (r) between subgroups on distance between two single
nucleotide polymorphism (SNP) markers. Table S1. Prediction accuracy
and unbiasedness under different iteration times in the mbBayesABLD
model. Table S2. Breeds included in reference populations for multiple
breed genomic prediction. Table S3. Genetic correlations between York-
shire and Landrace in a multi-trait model. Table S4. Genetic correlations
between bean panels in a multi-trait model. Table S5. Computational
speed (min) of multibreed genomic prediction models in the simulation
study. Table S6. Peak memory usage (MB) of multibreed genomic predic-
tion models in the simulation study. Table S7. The accuracies of different
models in the simulated datasets. Table S8. The unbiasedness of different
models in the simulated datasets. Table S9. The accuracies of different
models in real datasets. Table S10. The unbiasedness of different models in
real datasets. Table S11. Allele frequency correlations (upper triangle) and
persistence of the LD phase (lower triangle) between breeds in simulated
and real datasets. Supplemental Methods

Acknowledgements

We thank the support of the high-performance computing platform of the
National Research Facility for Phenotypic and Genotypic Analysis of Model
Animals, and High-performance Computing Platform of China Agricultural
University.

Page 11 of 12

Authors’ contributions

JL: Conceptualization, Methodology, Project administration. JJ: Methodology,
Supervision, Writing — review & editing. WL: Investigation, Software, Writing —
original draft, Writing — review & editing. SL: Writing — review & editing, Visualiza-
tion. HD: Writing — review & editing. QH: Investigation, Writing — review & editing.
YZ: Writing - review & editing. LZ: Conceptualization, Writing — review & editing.
WL: Validation, Writing — review & editing. JC: Data curation, Writing — review &
editing. All the authors have read and approved the final manuscript.

Funding

This work was supported by the Biological Breeding-Major Projects in National
Science and Technology (No. 2023ZD0404405), the Earmarked Fund for China
Agriculture Research System (No. CARS-pig-35), the National Natural Science
Foundation of China (No. 3227284, 32302708), the 2115 Talent Development
Program of China Agricultural University, the Chinese Universi-ties Scientific
Fund (No. 2023TC196) and the Seed Industry Revitalization Action Project of
Guangdong Province (No. 2024-XPY-06-001).

Data availability

The source code of mbBayesABLD software, together with all code and pro-
grams required to reproduce the results of this study, is publicly available in a
unified GitHub repository: https://github.com/CAU-TeamLiuJF/MBGP_CV.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All the authors listed have approved the publication of the manuscript.

Competing interests
The authors declare no competing interests.

Author details

'State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center
for Molecular Design Breeding (MOE), College of Animal Science and Technol-
ogy, China Agricultural University, Haidian, Beijing 100193, China. ?Institute

of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing

Jiangsu 210014, China. 3Department of Animal Science, North Carolina State
University, Raleigh North Carolina 27695, USA.

Received: 26 September 2025 Accepted: 23 October 2025
Published online: 20 December 2025

References

1. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29.

2. Meuwissen T, Hayes B, Goddard M. Accelerating improvement of live-
stock with genomic selection. Annu Rev Anim Biosci. 2013;1(1):221-37.

3. Voss-Fels KP, Cooper M, Hayes BJ. Accelerating crop genetic gains with
genomic selection. Theor Appl Genet. 2019;132(3):669-86.

4. Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic analysis,
progress and future perspectives in dairy cattle selection: a review. Ani-
mals. 2021;11(3):599.

5. Gebreslase HW, Klemetsdal G, Banerjee S, Abebe A, Taye M, Adnoy T.
Genetic analysis of test-day milk yield in sheep recorded at two govern-
mental breeding and multiplication centers in Ethiopia. Acta Agric Scand
A Anim Sci. 2024;73(3-4).97-104.

6. LiuK, Houl,YinY,Wang B, Liu C, Zhou W, et al. Genome-wide association
study reveals new QTL and functional candidate genes for the number of
ribs and carcass length in pigs. Anim Genet. 2023;54(4):435-45.

7. MaH,LiH, GeF, Zhao H, Zhu B, Zhang L, et al. Improving genomic predic-
tions in multi-breed cattle populations: a comparative analysis of BayesR
and GBLUP models. Genes. 2024;15(2):253.

8. Giannuzzi D, Mota LFM, Pegolo S, Tagliapietra F, Schiavon S, Gallo L,
et al. Prediction of detailed blood metabolic profile using milk infrared


https://doi.org/10.1186/s40104-025-01303-9
https://doi.org/10.1186/s40104-025-01303-9
https://github.com/CAU-TeamLiuJF/MBGP_CV

Li et al. Journal of Animal Science and Biotechnology

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

(2025) 16:176

spectra and machine learning methods in dairy cattle. J Dairy Sci.
2023;106(5):3321-44.

Ryan CV, Pabiou T, Purfield DC, Berry DP, Conroy S, Murphy CP, et al.
Exploring definitions of daily enteric methane emission phenotypes for
genetic evaluations using a population of indoor-fed multi-breed grow-
ing cattle with feed intake data. J Anim Sci. 2024;102:skae034.

Wu P, Ou J, Liao C. Sample size determination for training set optimization
in genomic prediction. Theor Appl Genet. 2023;136(3):57.

. Guillenea A, Lund MS, Evans R, Boerner V, Karaman E. A breed-of-origin

of alleles model that includes crossbred data improves predictive abil-
ity for crossbred animals in a multi-breed population. Genet Sel Evol.
2023;55:34.

Hayes BJ, Copley J, Dodd E, Ross EM, Speight S, Fordyce G. Multi-breed
genomic evaluation for tropical beef cattle when no pedigree informa-
tion is available. Genet Sel Evol. 2023;55:71.

Zhao W, Zhang Z, Wang Z, Ma P, Pan Y, Wang Q. Factors affecting the
accuracy of genomic prediction in joint pig populations. Animal.
2023;17(10):100980.

Kjetsa MV, Gjuvsland AB, Grindflek E, Meuwissen T. Effects of reference
population size and structure on genomic prediction of maternal traits
in two pig lines using whole-genome sequence-, high-density- and com-
bined annotation-dependent depletion genotypes. J Anim Breed Genet.
2024;141(6):587-601.

Ros-Freixedes R, Johnsson M, Whalen A, Chen CY, Valente BD, Herring
WO, et al. Genomic prediction with whole-genome sequence data in
intensely selected pig lines. Genet Sel Evol. 2022;54:65.

Cardoso FF, Matika O, Djikeng A, Mapholi N, Burrow HM, Yokoo MJJ, et al.
Multiple country and breed genomic prediction of tick resistance in beef
cattle. Front Immunol. 2021;12:620847.

Colombi D, Bonifazi R, Sbarra F, Quaglia A, Calus MPL, Lasagna E. Multi-
breed genomic predictions for average daily gain in three Italian beef cat-
tle breeds. J Anim Breed Genet. 2025. https://doi.org/10.1111/jbg.70004.
LiW, Zhang M, Du H, Wu J, Zhou L, Liu J. Multi-trait bayesian models
enhance the accuracy of genomic prediction in multi-breed reference
populations. Agriculture (Basel). 2024;14(4):626.

Chen C, Knap PW, Bhatnagar AS, Tsuruta S, Lourenco D, Misztal |, et al.
Genetic parameters for pelvic organ prolapse in purebred and crossbred
sows. Front Genet. 2024;15:1441303.

Vargas JN, Notter DR, Taylor JB, Brown DJ, Mousel MR, Lewis RM. Com-
bined purebred and crossbred genetic evaluation of Columbia, Suffolk,
and crossbred lamb birth and weaning weights: systematic effects and
heterogeneous variances. J Anim Sci. 2024;102:skad410.

Momin MM, Zhou X, Hypp&nen E, Benyamin B, Lee SH. Cross-ancestry
genetic architecture and prediction for cholesterol traits. Hum Genet.
2024;143(5):635-48.

Ramayo-Caldas Y, Renand G, Ballester M, Saintilan R, Rocha D. Multi-breed
and multi-trait co-association analysis of meat tenderness and other
meat quality traits in three French beef cattle breeds. Genet Sel Evol.
2016;48:37.

Teng J, Zhai T, Zhang X, Zhao C, Wang W, Tang H, et al. Improving multi-
population genomic prediction accuracy using multi-trait GBLUP models
which incorporate global or local genetic correlation information. Brief
Bioinform. 2024;25(4):bbae276.

Sargolzaei M, Schenkel FS. QMsim: a large-scale genome simulator for
livestock. Bioinformatics. 2009;25(5):680-1.

Xie L, Qin J, Rao L, Tang X, Cui D, Chen L, et al. Accurate prediction and
genome-wide association analysis of digital intramuscular fat content in
longissimus muscle of pigs. Anim Genet. 2021;52(5):633-44.

Keller B, Ariza-Suarez D, Portilla-Benavides AE, Buendia HF, Aparicio JS,
Amongi W, et al. Improving association studies and genomic predictions
for climbing beans with data from bush bean populations. Front Plant
Sci. 2022;13:830896.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007,81(3):559-75.

Badke YM, Bates RO, Ernst CW, Schwab C, Steibel JP. Estimation of linkage
disequilibrium in four US pig breeds. BMC Genomics. 2012;13:24.
Gianola D, Fernando RL. A multiple-trait bayesian lasso for genome-
enabled analysis and prediction of complex traits. Genetics.
2020;214(2):305-31.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Page 12 of 12

R Core Team. R: a language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2024.

Werme J, van der Sluis S, Posthuma D, de Leeuw CA. An integrated frame-
work for local genetic correlation analysis. Nat Genet. 2022;54(3):274-82.
Gebreyesus G, Lund MS, Buitenhuis B, Bovenhuis H, Poulsen NA, Janss
LG. Modeling heterogeneous (co)variances from adjacent-SNP groups
improves genomic prediction for milk protein composition traits. Genet
Sel Evol. 2017;49:89.

Li X, Lund MS, Janss L, Wang C, Ding X, Zhang Q, et al. The patterns of
genomic variances and covariances across genome for milk production
traits between Chinese and Nordic Holstein populations. BMC Genet.
2017;18:26.

Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultane-
ous discovery, estimation and prediction analysis of complex traits using
a bayesian mixture model. PLoS Genet. 2015;11(4):e1004969.

Zhou J, Lin Q, Feng X, Ren D, Teng J, Wu X, et al. Evaluating the perfor-
mance of genomic selection on purebred population by incorporating
crossbred data in pigs. J Integr Agric. 2024;23(2):639-48.

VanRaden PM. Efficient methods to compute genomic predictions. J
Dairy Sci. 2008;,91(11):4414-23.

Hong E, Chung Y, Dinh PTN, Kim Y, Maeng S, Lee J, et al. Effect of breed
composition in genomic prediction using crossbred pig reference popu-
lation. J Anim Sci Technol. 2025;67(1):56-68.

Madsen P, Su G, Labouriau R, Christensen O. DMU - a package for analyz-
ing multivariate mixed models. In: The proceedings of the 8th world
congress on genetics applied to livestock production. Brasil; 2006.

van den Berg |, MacLeod IM, Reich CM, Breen EJ, Pryce JE. Optimiz-

ing genomic prediction for Australian Red dairy cattle. J Dairy Sci.
2020;103(7):6276-98.

Barani S, Nejati-Javaremi A, Moradi MH, Moradi-Sharbabak M, Gholizadeh
M, Esfandyari H. Genome-wide study of linkage disequilibrium, popula-
tion structure, and inbreeding in Iranian indigenous sheep breeds. PLoS
ONE. 2023;18(6):20286463.

Song H, Zhang Q, Ding X. The superiority of multi-trait models with
genotype-by-environment interactions in a limited number of environ-
ments for genomic prediction in pigs. J Anim Sci Biotechnol. 2020;11:88.
Wientjes YCJ, Veerkamp RF, Calus MPL. Using selection index theory to
estimate consistency of multi-locus linkage disequilibrium across popula-
tions. BMC Genet. 2015;16:87.

Grossi DA, Jafarikia M, Brito LF, Buzanskas ME, Sargolzaei M, Schenkel FS.
Genetic diversity, extent of linkage disequilibrium and persistence of
gametic phase in Canadian pigs. BMC Genet. 2017;18:6.

Samoré AB, Fontanesi L. Genomic selection in pigs: state of the art and
perspectives. Ital J Anim Sci. 2016;15(2):211-32.

BoernerV, Nguyen TTT, Nieuwhof GJ. Integration of Interbull's multiple
across-country evaluation approach breeding values into the multiple-
trait single-step random regression test-day genetic evaluation for yield
traits of Australian red breeds. J Dairy Sci. 2023;106(2):1159-67.


https://doi.org/10.1111/jbg.70004

	Improving multibreed genomic prediction for breeds with small populations by modeling heterogeneous genetic (co)variance blockwise accounting for linkage disequilibrium
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Datasets
	Simulation
	Real data

	Genomic structure analysis
	mbBayesABLD model
	Models used for comparative analysis
	Bayesian models
	GBLUP models

	Cross-validation and model performance assessment

	Results
	Effects of genome segmenting on multibreed prediction accuracy
	Simulation datasets
	Software runtime and memory usage
	Combining a large-population breed and a small-population breed
	Combining multiple small-population breeds

	Public pig and bean data
	Pig data of two breeds with different population sizes
	Bean data with multiple small-population panels


	Discussion
	Conclusion
	Acknowledgements
	References


